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In mechanics there has always been considerable interest in processes in which a struc- 
ture arises by some means or other. Classic examples of these processes are formation of 
Bernard cells with convective flotation of a layer of liquid, Taylor vortices in shear flows 
between coaxial cylinders, formation of a regular system of vortices in stratified shear flow 
(the Kelvin--Helmholtz instability), etc. [i]. The mechanics of rocks and loose materials 
also has many similar interesting examples. Probably everyone has observed a set of poly- 
gonal cracks which forms when the earth dries after rain. Here a structural heirarchy may 
form when there is formation of large blocks with the same scale, then they divide into 
blocks with a smaller scale, etc. This situation is typical for rocks [2]. 

Regular structures may also arise in loose material. We take the simplest situation 
of uniform shear of a sample of loose material. In fact we are talking about Couette flow 
between parallel plates. It is possible to realize it in special equipment for uniform 
shear (in this connection it is necessary that in contrast to viscous liquids there are no 
attachment conditions at the boundary). With small shears flow is plane-parallel in nature, 
and then in the material a three-dimensional and quite ordered structure forms. Here the 
material is broken down into individual cells, and shear is localized at their boundaries [3]. 

Depending on material properties and loading conditions the structure may be three- 
dimensional, provisional, or of a mixed nature. Generally all flow processes for liquids 
and other more complex materials (here for brevity we also include processes of solid defor- 
mation) may be broken down into three major classes: i) processes in which there is no 
structure formation; 2) processes with formation of a structure; 3) other processes. Of 
course this is not a strict classification, but here it is entirely satisfactory. 

We pose the problem: is it possible to describe the second class of flow more or less 
constructively? It is clear that for flow itself its nature depends on the rheology of the 
medium (i.e., the material), and loading conditions and regimes (initial and boundary con- 
ditions, and also mass forces). These parameters may be referred to as controlling parame- 
ters connected with reaction of the material (energy dissipation rate, stress, and strain 
distribution, the fact itself of structure formation and its characteristics), are control- 
ling. Then the problem is formulated in a different way: from the multitude of combina- 
tions of controlling parameters a class is separated which leads to formation of a structure. 

As in [4] we consider structures not as statistical data, but as something which arise 
during evolution of a system, and in our case a deformable maternal-external conditions sys- 
tem. Let T be a scalar parameter which specifies the momentary state of the system (for ex- 
ample T may be the intensity of loading, shear, etc.) and it plays the role of a physical 
or some internal time. Always it is possible to normalize T so that the initial state corre- 
sponds to T = 0, development of the process to an increase in T, and formation of a structure 
to values from T* to T o . 

In this situation the original problem may be written as follows: under what condi- 
tions should the process be satisfied with T < T*. Or in other words from what flows and 
deformation processes may quite regular structures develop. This problem is simpler than 
the original one since it relates to description of some class of normal flows without 
structures (basic flows). 

The regularity of a structure points to some invariance of it in space. In fact this 
leads to the situation that the distribution of stresses, strains, and local energy dissip- 
ation acquires a more or less periodic nature. Therefore, a process with a structure is to 
a certain extent uniform and spatially invariant. This view leads to the following idea: 
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Fig. i 

flow which precedes occurrence of a structure should be as much as possible uniform with re- 
spect to space. In an ideal situation this is flow in which stresses and strains, and this 
means their rates, do not depend on spatial coordinates. This characteristic is sufficient 
for accurate description for the corresponding class of flows, and this was partly done in 
[5]. Of course, well-known flows (for example, Couette flow between parallel plates) fall 
into the class in [5]. It appears that in spite of the almost trivial nature of the state- 
ment of the problem new flows were detected here including those which it is entirely rea- 
sonable to realize. 

Uniform flows were considered in [5] in connection with the possibility of using them 
for rheometric studies. There the most important thing was retention of flow uniformity, 

i.e., maintenance of those regimes when T < T*. Here in a certain sense the problem is the 

opposite one, i.e., to create conditions when flow evolves beyond a limiting value T*. An- 
alysis is most simple if we revert to conditions of uniqueness. It is shown in [5] that uni- 
form flow is unique if stability is retained for a deformable body and there is also rheo- 
logical stability for the material; absence of inertial and other mass forces; the material 
is uniform. The latter will also be assumed below since structures connected with material 
inhomogeneity, and this means those in a hidden form from the start, are not of interest. 
Thus if the uniqueness conditions indicated above are set, it is possible to expect develop- 
ment of regular structures. 

Let boundary conditions be prescribed at the boundary corresponding to uniform flow, 

and the loading regime lead T beyond the region (0, T*). In this case it is not indifferent 
to how conditions are prescribed at the boundary. We clarify this by a specific example. 

Let the basic deformation process be reduced to tension of a rod 0 ~ x ~ L, IyI ~ h/2 (x, y 

are Cartesian coordinates, L, h are rod length and width (h << L), plane strain). Displace- 
ment components have the form 

~o , ~o (1) 
u = - z - x ,  v = - - v - L - y  

( u  ~ i s  d i s p l a c e m e n t  o f  t h e  e n d  x = L ,  v i s  a m a t e r i a l  c h a r a c t e r i s t i c ) .  T h i s  p r o c e s s  may  b e  

realized very simply; at the end of the rod x = L a tensile force P = P(u ~ is applied, but 

the side surfaces IYl = +h/2 are free from stresses. However, it is easy to see that in this 
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case with transition through a critical condition as a rule there will be no structure what- 
soever. For definiteness we assume that the critical state relates to transition of the 

curve P--u ~ into a descending branch. Then any disturbances (for example, the width h) leads 
to the situation that the rod only separates into two parts. 

The same uniaxial tension may be realized in another way: by prescribing over the 

whole closed boundary x = 0, L, lyl ~ h/2 and y = • 0 ~ x ~ L for displacement vector (i). 

In the precritical state the result is the same as that with stresses prescribed at the bound- 

ary. However, with transition through T* the situation is different in principle. Perturba- 
tions will not spread over the whole length and the rod is separated into parts by a quite 
regular crack system (a similar problem was considered in [6]). Thus, for our purposes con- 
ditions at the boundary should be as close as possible to the second type (stiff loading). 

Thus, the method for realizing flows with a structure may be reduced to the following 
sequence of operations: i) a specific base for uniform flow (for example, from the class in 
[5]) is chosen; 2) the original configuration of the deformable region is chosen and for it 
the corresponding boundary conditions are determined; 3) a loading device is created which 
realizes boundary conditions in the stiffest possible way; 4) material rheology, loading pa- 
rameters, and possibly also boundary configuration (according to (2)) are chosen so that at a 
certain instant the uniqueness conditions of strain and stress distribution are upset. 

Here it is appropriate to consider one generalization. It is possible in a natural 
way to broaden the class of basic flows by weakening some of the requirements for uniformity. 
For example, it is not necessary that strain in the basic flow depend on all three coordi- 
nates x, y, and z, but we say that it only depends on x and y. Then it is also not necessary 
for precise fulfillment of boundary conditions which follow from strain uniformity (especi- 
ally as with precise realization of them considerable difficulties arise). 

Thus, as a result of accomplishing this algorithm we obtain flow with a certain regular 
structure. In particular cases this is proved theoretically (see [6, 7]). In the general 
case apparently proof is impossible. It is sufficient to quote that known structures, and 
primarily methods for realizing them, are contained in this algorithm. By using this it is 
possible to obtain new forms of regular structures. 

We consider a number of examples. As a basis we choose plane elliptical flow [5, 8]. 
This is superposition of a ~equence of Couette flows between parallel plates. Total strain uni- 
formity is provided if at the boundary of an elliptical region a Keplerian distribution of 
velocities is prescribed:(v.n) = O, v • r= const (n is the normal to the boundary, r is the radius- 
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vector from the center of the ellipse). For practical realization it is convenient to use 

generalization and the last boundary condition is replaced by one close to it: IvI = const. 

Thus, at the boundary of the elliptical region the following kinematic conditions should be 
fulfilled 

(2) 
( v . n )  = O, Iv l = c o n s t .  

A device for realizing (2) is shown in Fig. i. A specimen of material 1 is placed in a deep 
cylindrical chamber 2. The side surface of the chamber is a shell of elastic thin sheet 
metal. The bottom of the chamber is closed uniformly by stretched rubber 3 fastened to the 
inner surface of the shell. The loading device is rigid plate-formers 4 with coaxial ellip- 
tical cut-outs. The cylindrical chamber is placed within them. Since the length of the el- 
liptical cut-outs equals the length of the boundary of the chamber cross section, then after 
installation the chamber takes on the shape of an elliptical cylinder. The plates embrace 
the shell in two sections over the height and are fastened on shaft 5 through bearings in- 
stalled in a base 6. Loading is performed by rotating the plates from an electric drive 
not shown in Fig. i) with respect to the fixed chamber. The rotating friction moment which 
arises at the chamber surface is compensated by flexible ties 7 fastened to fixed uprights 8. 

The degree of loading stiffness depends to a certain extent on the choice of material. 
We consider deformation of specimens of dry and water-impregnated sand. Then the condition 

(v.n) = 0 is fulfilled, and Iv[ = const is in fact replaced by the condition of external dry 

friction [Tnl ~ - fo n (Tn, o n are tangential and normal stresses, f is external friction co- 

efficient). If the inequality is rigorous, then the condition IvI = const is precisely main- 

tained, and if there is not equality then sliding along the shell is possible. On the whole 
the loading method suggested is quite stiff. 

We turn to choice of material. Dry sand satisfies the requirements formulated above 
only in cases when significant shears are realized. In loading method (2) characteristic 
shear is estimated by the value (i - K) (K = b/a is coefficient of ellipse compression, b, a 
are its semi-axes). Experiments show that with small (i - K) the deformation process 
has a smooth stable character and no structure arises whatsoever. Here packing of particles, 
stress distribution, and velocities move into a steady condition. With an increase in strains 
(i - K) and transition of them through a critical value the picture changes sharply. A system 
of slip lines forms in the material, then as a result of convective rotation it ceases to 
function, a new system forms, etc. These systems separate specific structural cells in the 
material [9]. 
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TABLE 1 

Storage conditions 

Calcined 

Exposure under room 
conditions 

Exposure in a 'water 
bath' 

Size of clods, mm 

alumina Iflourlgypsum 

1,2 3 4 

1,5 4,5 5,5 

2,5 6 7 

kaolin 

7,5 

8 

11,5 

The rheology of water-impregnated sand also satisfies the requirements indicated above. 
Compared with dry sand there is marked adhesion. Therefore critical strains are reduced, 
and moreover both slip lines and normal separation cracks become possible. This means that 
if in a uniform process critical strains are reached the uniformity is unavoidably upset. 

Tests were performed in the following sequence. First, a specimen of dry sand was 
placed in the chamber and loading was carried to transition of packing into a steady state. 
Here parameters were selected so that no structure arose whatsoever (K = 0.91, a = 60.8 m m, 
b = 55.3 mm). Quartz sand was used with a particle size of 0.3 mm, specimen weight 545 g, 
and in the steady state the specimen volume V = 320 cm a, pore volume Vp = 115 cm ~, and the 

porosity is 36%. 

After reaching a steady state loading was ceased and liquid was introduced into the 
specimen. In all tests its volume V L exceeded Vp, i.e., in the original state the impreg- 

nation factor m W = VL/V p > i. Therefore before deformation at the specimen surface a layer 

of of excess liquid always remained. Then loading was started for a water-impregnated spe- 
cimen. With rotation of the plates packing underwent positive dilation, and therefore the 
layer of liquid was sucked from the specimen surface into the increased pore volume. On 
reaching critical strains for the specimen a system of parallel cracks forms. As a result 
of convective rotation cracks emerge from under load and a new system develops. In this re- 
spect the process is similar to deformation of dry sand. The difference consists of the 
fact that dry sand cracks are only shear in nature and they heal, but here due to ad- 
hesion a specimen separates into individual stable cells. The excess of liquid is concen- 
trated at its boundaries. As a result of rotation the cell angles are smoothed and their 
shape becomes round (Fig. 2, a) V L = 125.5 g, b) 131 g). 

It can be seen in phogographs that apart from a characteristic average size cells are 
also encountered with small dimensions obtained mainly with chambering of the initial cell 
angles, and that an increase in liquid leads to a reduction in average cell dimension d, and 
the dependence on coordinates average size - impregnation factor is almost linear (Fig. 3). 

Above basic flow is realized by describing special displacements at the boundary. In 
principle it is possible to create them also by special mass forces. We consider one exam- 
ple. Let the specimen be a horizontal layer 0 ~ z ~ h placed on a backing z = 0. We shall 
displace the backing in its plane over a circle of small radius R. Then in each layer of 
the element specific forces of inertia start to operate. If the role of the side walls is 
removed, then immediately it can be seen that the stress-strained state of the layer may 
only depend on coordinate z and on time t, i.e. there is no dependence x and y. Therefore, 
this deformation may be referred to as basic. 

Powder materials were used in the tests. Shown in Fig. 4 is the device for realizing 
this loading scheme. A disk 2 with a shift 3 is fastened to a base I. A layer of powder is 
placed in a cylindrical cup 4 with a diameter of 120 mm. A series of holes 6 is arranged in 
the disk at different distances from its center. In one of them through a bearing a shaft 5 
is held to which the cup is attached. Uprights 7 hold the cup through springs with rotation 
of the disk. The disk drive is accomplished by a motor 8 through a reducer 9 and a belt 
transmission i0. The device is fitted with a rheostat by means of which it is possible to 
change the motor revolution smoothly [i0]. 

The scale of forces of inertia with loading intensity is determined by the value % = 

Rm 2 (~ is angular velocity of disk rotation). In tests radius R was fixed, but ~ was grad- 
ually increased. As might be expected, with small % the process is stable in nature. 
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With transition through a critical value structural elements form, shown in Fig. 5. 
The mechanism of their formation is connected with surface instability of the layer. Par- 
ticles at the free surface are drawn into movement as a result of adhesion with the lower 
layer and the side action of upper layer particles. With high forces of inertia adhesion 
is overcome and particles fall behind movement of the backing. At this time it is in con- 
tact with different particles of the backing and it 'interrogates' them on the subject of 
possible attachment. If the material exhibits sufficient sticking, then the 'interroga- 
tion' leads to formation of clods. Shown in Fig. 5 are clods with tests on kaolin (R = 

5 mm, ~ = 18.8 sec-Z). It can be seen that apart from large spherical formations there are 
also simultaneously small rudimentary formations. The time of their growth to critical di- 
mensions (when they start to break) is proportional to the rolling path over the underlying 
layer. The critical size itself is determined by forces of particle adhesion tending to 
maintain their spherical shape. 

Thus, from the size of the clods it is possible to assess the tendency of 
material towards forming agglomerates, and consequently to caking. All of these indices 
depend on powder moisture content, and therefore it may be estimated indirectly. Given 
in Table 1 are data for the average dimensions of clods for different materials. Treatment 
of the results is somewhat complicated by the fact that the process of clod formation is 
dynamic in nature. During formation they start to react with each other, they break, and 
then grow again, etc. Therefore in tests the rotation rate is gradually increased at first 
to a certain limit, and then it is reduced to zero. After this treatment of the results 
was carried out. 

In this method directions x and y are the same as any in this plane, and they are en- 
tirely of equal value. Such are the specific loading conditions. 

Now we consider loading with a separate direction x. Let a layer of material contain 
reciprocating motion in its plane in direction x. Here with a certain frequency there is 
also surface loss of stability and a structure arises with a characteristic size along axis 
x (Fig. 6, water-impregnated sand, amplitude 3 mm, frequency i0 Hz). 

Thus, known methods for realizing dissipative structures are refined in the suggested 
algorithm. The algorithm makes it possible to obtain new dissipative structures. In a 
number of cases they are of direct practical interest. 
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